
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Memory safety through Linearity, Ownership & Borrowing

JAKUB SCHWENKBECK

Memory safety is one of the most important tasks in software development. Unsafe handling of memory can
lead to errors such as use-after-free, double-free, or memory leaks. These errors can cause program crashes
and unpredictable behavior or even open up critical security vulnerabilities. Guaranteeing memory safety is
therefore important to create robust, reliable, and secure applications. This paper explores how Rust leverages
type theory to ensure memory-safe code without typical trade-offs.

CCS Concepts: • Theory of computation→ Type theory; Linear logic.

ACM Reference Format:
Jakub Schwenkbeck. 2025. Memory safety through Linearity, Ownership & Borrowing . 1, 1 (August 2025),
6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Common Approaches to Memory Safety
In software development and the development of programming languages, there are different
common paradigms to adress memory management. Two of the most prominent approaches are
manual memory management and the use of garbage collection (GC).

1.1 Manual Memory Management
Manual memory management requires the programmer to explicitly allocate and release memory.
Typical this includes functions such as malloc() and free() in C, or new and delete in C++. This
method offers developers fine-grained control and can therefore create highly efficient programs.
However, it is also error-prone: developers can forget to release memory, causing leaks, or they
free memory too early, leading to undefined behavior and possible security issues. The complexity
of managing memory manually significantly increases the likelihood of these bugs.

1.2 Garbage Collection
Garbage collection, on the other hand, moves the task of memory management to the runtime
system.Well known Languages such as Java, Python, C#, or JavaScript use Garbage Collection
which identifies and reclaims unused memory periodically. This reduces the risk of memory-related
errors and simplifies the development process. However, it also introduces runtime overhead and
can make performance less predictable, since the exact timing of memory reclaims is not in the
programmer’s control. Furthermore, GC-based languages rely on a runtime environment, which is
not ideal for e.g. embedded systems.

2 Theoretical Background of Rust’s Type System
The Rust programming language introduces an alternative approach to memory safety that is
neither fully manual nor reliant on garbage collection. Instead Rust leverages concepts from type
theory such as linearity and affinity, as well as the principle of Resource Acquisition Is Initialization
(RAII), to enforce memory safety at compile time without requiring a runtime garbage collector.

2.1 Linearity
The concept of linearity is the idea that each variable should be used exactly once in a program.
Enforcing such a restriction ensures exclusive access to resources, thereby preventing common
errors such as double usage or data races. While pure linear type systems are rare in practical

2025. ACM XXXX-XXXX/2025/8-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

2 Jakub Schwenkbeck

programming languages, they are studied extensively in theory. For instance, Linear Haskell is an
experimental extension that incorporates strict linear types. Rust adapts this principle in a more
pragmatic way.

2.2 Affinity
Rust does not implement strict linearity, but rather a relaxed form called affinity. Under this rule,
variables may be used at most once, meaning that they can be dropped without explicit use. This
approach avoids unnecessary errors while still ensuring memory safety. By default, Rust assumes
that any variable not explicitly used will be automatically deallocated when it goes out of scope.
This affine type system is the base of Rust’s guarantees of safe and efficient resource management.

2.3 RAII
A central mechanism is Resource Acquisition Is Initialization (RAII). According to this principle,
resources are bound to the lifetime of the objects that manage them. When an object goes out of
scope, its destructor—implemented via the Drop trait in Rust—is automatically called, ensuring
proper release of memory and other resources such as file handles or sockets. This happens
deterministically and without the need for a garbage collector, combining efficiency with safety. Its
wort mentioning that this concept is not exclusive to Rust as languages like C++ prominently use
it too.

2.4 Stack and Heap Allocation
Rust also provides a clear model for memory allocation. Primitive values and small data structures
are allocated on the stack by default, providing fast access and automatic deallocation once they go
out of scope. More complex or dynamically sized data structures, such as String, Vec, or Box<T>,
are allocated on the heap. In these cases, the stack holds a pointer to the heap data, which is
automatically freed when the pointer itself leaves scope.

3 Ownership, Borrowing, and Lifetimes
3.1 Move Semantics
In Rust, when a value is assigned to another variable, ownerships moves. After a move, the previous
variable is invalidated, which already prevents common bugs like data races, dangling pointers or
double frees!

Fig. 1. Move Semantics in Rust

3.2 Ownership
Each value has a single owner. This ownership can be transferred by a move. When the owner goes
out of scope, the value is dropped and the memory, stack and heap, is automatically freed. Moving
ownership from variables invalidates them (as seen in the Move Semantics).

, Vol. 1, No. 1, Article . Publication date: August 2025.



99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Memory safety through Linearity, Ownership & Borrowing 3

Ownership is e.g. transferred by reassigning variables (Fig. 1.) or when calling functions (Fig. 2.)

Fig. 2. Ownership transfer via function call

3.2.1 Copy and Clone Trait. To still be able to write code practically, some ’primitive types’ like
integers or booleans implement the so called Copy Trait. Those types are duplicated instead of
moved and the ownership stays with both variables after the reassignment. As these types use a
very small amount of memory space, it’s not critical to duplicate them.
For more complex types, you can use the Clone trait to explicitly create a deep copy of the data.
Unlike Copy, which happens automatically, calling .clone() could involve allocating memory or
duplicating resources, and therefore needs to be explicitly denotated by the programmmer. Small,
trivial types are copied implicitly, while larger or resource-heavy types must be cloned explicitly
when a duplication is really intended.

3.3 Borrowing
To be able to reuse a variable or resource e.g. after passing it as an argument in function calls,
we introduce Borrowing. Borrowing allows the use of a value without taking its ownership by
creating references. A reference is its own type and is noted with &. The actual value is accessible
by dereferencing with *, but this does not transfer ownership ,it only lets you work with the value
the reference points to. This is distinct from raw pointers known in C/C++, as Rust references are
always safe and checked by the borrow checker.

Fig. 3. Example of borrowing not taking ownership

3.3.1 Immutable References. Default references are immutable (notation : &T). There can be many
immutable references simultaneously, but data cannot be modified while immutably borrowed.
This ensures that data can be safely shared across different parts of a program without unexpected
changes. Multiple immutable references can coexist because none of them are allowed to modify
the actual value, guaranteeing consistency for all readers.

, Vol. 1, No. 1, Article . Publication date: August 2025.



148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

4 Jakub Schwenkbeck

Fig. 4. Multiple immutable references can coexist

3.3.2 Mutable References. To borrow mutably, you use &mut T. Only one mutable reference is
allowed at a time to, for example, prevent data races. Mutable references allow you to modify the
value. While the mutable reference exists, the owner cannot modify the value either.

Fig. 5. Single mutable reference

The rules are : at any given time, you can have either one mutable reference, or any number
of immutable references. References must always be valid, meaning no dangling references are
possible.

3.4 All together
The learned rules, together with RAII, enable reliable and clear patterns for memory and resource
management. When a value goes out of scope, its memory (or any other resource it owns) is
automatically and deterministically released. No need for manual cleanup, no garbage collector
pauses — but predictable, safe cleanup every time.

Fig. 6. Schematic example of the concepts in action

, Vol. 1, No. 1, Article . Publication date: August 2025.



197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Memory safety through Linearity, Ownership & Borrowing 5

3.5 Lifetimes
Lifetimes are Rust’s way to track how long references are valid. They prevent dangling references,
which are references to invalid memory. Every reference has a lifetime either implicitly or explicitly
declared. The Rust Lang uses lifetimes to guarantee memory safety and ensures that a reference
does not outlive the data it points to. This also helps the compiler check borrowing rules at compile
time. In many cases, the compiler infers lifetimes automatically, however sometimes the compiler
needs help, and in those cases we add lifetime parameters ’a. This means both parameters and
return value must live at least as long as ’a.

Fig. 7. Example of Lifetime annotation

In Fig. 7. we see how the programmer can ensure that both the passed arguments x and y will
live as long as the returned value, which is one of these two strings. If not annotated, we get an
ambiguity: the compiler cannot know whether the return value is linked to the lifetime of x or of y.
By adding ’a, we make it clear that the return reference is valid only as long as both inputs are,
removing the uncertainty and preventing unsafe code.

4 Smart Pointers and Advanced Concepts
Smart pointers are modern data structures that in difference to ’simple’ pointers known from plain
C, own and manage memory automatically. They behave just like normal pointer with additional
capabilities as automatic cleanup or reference counting.

4.1 Box and Recursive Types
Box⟨T⟩ is a smart pointer in Rust for allocating data on the heap. It stores the actual value on the
heap, but owns it on the stack. Like any other type it ensures single ownership and is dropped
when out of scope. Why use Box⟨T⟩? You need it when you want to store large data or recursive
types, when you want to transfer ownership without copying data, or when you need a known
size at compile time but the value is dynamically sized.

Fig. 8. Smart pointers like Box allow recursive types in Rust

, Vol. 1, No. 1, Article . Publication date: August 2025.



246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

6 Jakub Schwenkbeck

Fig. 8. shows how to create recursive tyes in Rust using Box⟨T⟩. Rust needs to know the size of
types at compile time. Recursive types like List would have infinite size without indirection. Box
adds a heap indirection and makes the enum size-known.

4.2 Unsafe Rust
Sometimes, safe Rust is not enough performance wise and thats where unsafe comes in. It is a way to
opt out of some compiler safety checks. Unsafe allows dereferencing raw pointers (*const T, *mut
T), calling unsafe functions or foreign code (FFI), manually managing memory, and implementing
low-level abstractions.

5 Conclusion
Rust shows that it is possible to achieve memory safety without needing a GC or meticulous manual
management. Its ownership, borrowing, and lifetime system eliminates common memory bugs
such as null pointers, use-after-free errors, and data races, while catching mistakes already at compile
time rather than at runtime. Deterministic cleanup via RAII avoids unpredictable GC pauses and
ensures resources are released as soon as they go out of scope.
The language also provides zero-cost abstractions, meaning that safety checks occur during

compilation without runtime overhead. At the same time, programmers have fine-grained control
comparable to manual memory management in C or C++, but with fewer risks. Finally, Rust is
natural to concurrent programming, meaning: the borrow checker enforces rules that prevent data
races by design.
Overall, Rust offers a balance between performance, safety, and expressiveness. Its model of

linearity, ownership, and borrowing demonstrates that safe systems programming is possible
without sacrificing efficiency.

References
A Online Resources
The following online resources were used for this work:

• https://research.ralfj.de/thesis.html
• https://doc.rust-lang.org/stable/book/
• https://rust-book.cs.brown.edu/
• https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
• https://btmc.substack.com/p/a-survey-on-memory-management-approaches
• https://smallcultfollowing.com/babysteps/blog/2023/03/16/must-move-types/

, Vol. 1, No. 1, Article . Publication date: August 2025.

https://research.ralfj.de/thesis.html
https://doc.rust-lang.org/stable/book/
https://rust-book.cs.brown.edu/
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://btmc.substack.com/p/a-survey-on-memory-management-approaches
https://smallcultfollowing.com/babysteps/blog/2023/03/16/must-move-types/

	Abstract
	1 Common Approaches to Memory Safety
	1.1 Manual Memory Management
	1.2 Garbage Collection

	2 Theoretical Background of Rust’s Type System
	2.1 Linearity
	2.2 Affinity
	2.3 RAII
	2.4 Stack and Heap Allocation

	3 Ownership, Borrowing, and Lifetimes
	3.1 Move Semantics
	3.2 Ownership
	3.3 Borrowing
	3.4 All together
	3.5 Lifetimes

	4 Smart Pointers and Advanced Concepts
	4.1 Box and Recursive Types
	4.2 Unsafe Rust

	5 Conclusion
	References
	A Online Resources

